Skip to main content

NTUBST2023EN

Faculty

Professor Ching-Hsuan Lin
Info


 

Associate Professor Ching-Hsuan Lin

Ching-Hsuan Lin

Title Professor 
Education Ph.D., Plant Pathology, University of Florida
Research Expertise Microbes and Infectious Disease, Medical Mycology, Signaling Cross-Talk
LAB Molecular Mycology Lab. (AC2-314)
TEL +886-2-3366-4449
E-mail chinghsuanlin@ntu.edu.tw
Personal webpage  

Research


Candida albicans is a commensal organism that normally resides on the skin and in the gastrointestinal tract of the human body. However, under some circumstances it can become an infectious agent and travel through the bloodstream causing systemic disease, particularly in immunocompromised patients (e.g. cancer patients and AIDS sufferers). Currently I am investigating several aspects of Candida biology, including the mechanisms of the biofilm formation, fungal pathogenicity, white-opaque transition, sexual cycle and signal transduction.

Publications


  1. Ke CL, Lew SQ, Hsieh Y, Chang SC, Lin CH. Convergent and divergent roles of the glucose-responsive kinase Snf4 in Candida tropicalis. Virulence. 2023 (Accepted). (SCI)
  2. Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and applications of chitosan. Polymers. 2021; 13:904. (SCI)
  3. Ke CL, Liao YT, Lin CH. MSS2 maintains mitochondrial function and is required for chitosan resistance, invasive growth, biofilm formation and virulence in Candida albicansVirulence. 2021. 12:281-297. (SCI)
  4. Lew SQ, Lin CH. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalisCurr Genet. 2021; 67:249-254. (SCI)
  5. Lin CH. mSphere of Influence: Turning to soil for medicines. mSphere. 2021. 6:01258. (SCI)
  6. Lo WH, Deng FS, Chang CJ, Lin CH. Synergistic antifungal activity of chitosan with fluconazole against Candida albicansCandida tropicalis, and fluconazole-resistant strains. Molecules. 2020; 25:5114. doi: 10.3390/molecules25215114. (SCI)
  7. Song YD, Hsu CC, Lew SQ, Lin CH. Candida tropicalis RON1 is required for hyphal formation, biofilm development and virulence but is dispensable for N-acetylglucosamine catabolism. Med Mycol. 2021. 59:379-391.. (SCI)
  8. Tseng YK, Chen, YC, Hou CJ, Deng, FS, Liang SH, Hoo SY, Hsu CC, Ke CL, Lin CH. Evaluation of biofilm formation in Candida tropicalis using a silicone-based platform with synthetic urine medium. Microorganisms. 2020 8:660. doi: 10.3390/microorganisms8050660. (SCI)
  9. Shen M, Li PT, Wu YJ, Lin CH, Chai E, Chang TC, Chen CT. The antifungal activities and biological consequences of BMVC-12C-P, a carbazole derivative against Candida species. Med Mycol. 2020; 58: 521-529. (SCI)
  10. Shih PY, Liao YT, Tseng YK, Deng FS, Lin CH. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Front Microbiol. 2019; 10: 602. doi: 10.3389/fmicb.2019.00602. (SCI)
  11. Chien CT, Chen YC, Liu YC, Liang SH, Lin HH, Lin CH. The antimicrobial photodynamic inactivation resistance of Candida albicans is modulated by the Hog1 pathway and the Cap1 transcription factor. Med Mycol.  2019; 57: 618-627. (SCI)
  12. ​Lin CH, Chien HF, Lin MH, Chen CP, Shen M, Chen CT. Chitosan inhibits the rehabilitation of damaged microbes induced by photodynamic inactivation. Int J Mol Sci. 2018; 19:2598;doi: 10.3390/ijms19092598. (SCI)
  13. Deng FS, Lin CH. Identification and characterization of ORF19.1725, a novel gene contributing to the white cell pheromone response and virulence-associated functions in Candida albicansVirulence. 2018; 31: 866-878. (SCI)
  14. Deng FS, Lin CH. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicansMed Mycol. 2018; 56:242-252.(SCI)
  15. Chang WH, Liang SH, Deng FS, Lin CH. The conserved dual phosphorylation sites of the Candida albicans Hog1 protein are crucial for white-opaque switching, mating, and pheromone-stimulated cell adhesion. Med Mycol. 2016; 54(6): 682-640 (MOST103-2628-B-002-003-MY3) (SCI)
  16. Lin CH, Chung KR. Interactions of MAP kinases, histidine kinase and YAP1 in the citrus fungal pathogen Alternaria alternataPlant Pathology bulletin. 2014; 23: 307-315.
  17. Liang SH, Cheng JH, Deng FS, Tsai PA, Lin CH. A novel function for Hog1 SAPK in controlling white-opaque switching and mating in Candida albicans.  Eukaryot Cell. 2014; 13(12): 1557-1566. (SCI) (NSC102-2320-B002-027-MY3, MOST103-2628-B-002-003-MY3 and NTU103R7787)
  18. Chen LH, Lin CH, Chung KR. A nonribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata.Mol Plant Pathol 2013; 14(5): 497-505.(SCI)
  19. Lin CH, Kabrawala S, Fox EP, Nobile CJ, Johnson AD, Bennett RJ. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. 2013; PLoS Pathog. 9(4): e1003305. (SCI) (NSC-101-2320-B-002-050) (Recommend article by Faculty of 1000)
  20. Chen LH, Lin CH, Chung KR. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternataFungal Genet Biol. 2012; 49(10): 802-13. (SCI)
  21. Lin CH, Choi A, Bennett RJ. Defining pheromone-receptor signaling in Candida albicans and related asexual Candida species. Mol Biol Cell. 2011; 22(24): 4918-30. (SCI)
  22. Yago JI, Lin CH, Chung KR. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternataMol Plant Pathol. 2011; 12(7): 653-65. (SCI)
  23. Wang NY, Yang SL, Lin CH, Chung KR. Gene inactivation in the citrus pathogenic fungus Alternaria alternata defect at the Ku70 locus associated with non-homologous end joining. World J Microbiol Biotechnol. 2011; 27(8): 1817-26. (SCI)
  24. Lin CH, Yang SL, Chung KR. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. Curr Microbiol. 2011; 62(3): 807-15. (SCI)
  25. Lin CH, Lee CN, Lin JW, Tsai WJ, Wang SW, Weng SF, Tseng YH. Characterization of Xanthomonas campestris pv. campestris heat shock protein A (HspA), which possesses an intrinsic ability to reactivate inactivated proteins. Appl Microbiol Biotechnol. 2010; 88(3): 699-709. (SCI)
  26. Lin CH, Chung KR. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet Biol. 2010; 47(10): 818-27. (SCI)
  27. Lin CH, Yang SL, Wang NY, Chung KR. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Fungal Genet Biol. 2010; 47(4): 381-91. (SCI)
  28. Wang NY, Lin CH, Chung KR. A Gα subunit gene is essential for conidiation and potassium efflux but dispensable for pathogenicity of Alternaria alternata on citrus.Curr Genet. 2010; 56(1): 43-51. (SCI)
  29. Yang SL, Lin CH, Chung KR. Coordinate control of oxidative stress tolerance, vegetative growth, and fungal pathogenicity via the AP1 pathway in the rough lemon pathotype of Alternaria alternataPhysiol Mol Plant Pathol. 2009; 74(2): 100-10. (The first two authors contributed equally) (SCI)
  30. Lin CH, Yang SL, Chung KR. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol Plant Microbe Interact. 2009; 22(8): 942-52. (SCI)
  31. Chen CR, Lin CH, Lin JW, Chang CI, Tseng YH, Weng SF. Characterization of a novel T4-type Stenotrophomonas maltophilia virulent phage Smp14. Arch Microbiol. 2007; 188(2): 191-7. (The first two authors contributed equally) (SCI)